Tuesday, December 31, 2019
Examining Good and Bad Conscience in Friedrich Nietzsches...
Friedrich Nietzsche is recognized for being one of the most influential German philosophers of the modern era. He is known for his works on genealogy of morality, which is a way to study values and concepts. In Genealogy of Morals, Friedrich Nietzsche mentions that values and concepts have a history because of the many different meanings that come with it. Nietzsche focused on traditional ethical theories, especially those rooted in religion. Not being a religious man, he believed that human life has no moral purpose except for the significance that human beings give it. People from different backgrounds and circumstances in history bend moralitys meaning, making it cater to the norms of their society. For example, the concept of what isâ⬠¦show more contentâ⬠¦The concept of ââ¬Å"guilt was first recognized as being similar with the German word debt. A person in debt was seen as being the one guiltyâ⬠(Nietzsche 2010). According to Nietzsche, men were privileged with the ability to make and keep promises. With that in mind he always believed that in order for society to continue to work, men must enter into a world of promises that they can keep and deliver back. In order to keep a promise one must require a powerful memory and a confidence that their promise will be carried out. For whatever reason man is unsuccessful or fails to remember to keep a promise he then becomes ââ¬Å"the indebted to the creditorâ⬠, the person to whom the promise was made (Rattan 2010). The creditor is then looked at as being superior over the debtor, while the debtor is inferior to the creditor, because he owes him something. As a way of ââ¬Å"gaining personal satisfaction, the creditor would go through extremes to feel paid off by the debtorâ⬠, hence, punishment (Rattan 2010). In the essay of genealogy of morals it mentioned that as some forms of punishment they would, ââ¬Å"impale on a stake, ripping people apart or stamping them to death with horses, boi ling the criminal in oil or wineâ⬠(Rattan 2010). Other forms of punishment also included the creditors taking the debtors valuable possessions or inflict pain as a method of causingShow MoreRelated Nietzsches New Morality as Reaction to the Old Essay3231 Words à |à 13 PagesNietzsches New Morality as Reaction to the Old The purpose of Friedrich Nietzsches On The Genealogy of Morals (1887) is to answer the following questions, which he clearly lays out in the preface: under what conditions did man devise these value judgments good and evil? And what value do they themselves possess? Have they hitherto hindered or furthered human prosperity? Are they a sign of distress, of impoverishment, of the degeneration of life? Or is there revealed in them, on the contrary
Monday, December 23, 2019
The Breakfast Club Character Analysis Essay - 1096 Words
In the movie The Breakfast Club, five seemingly different adolescents are assigned Saturday detention where they learn that although they each fit a particular stereotype, they all have the same characteristics, but they are expressed differently because they have different experiences, strengths and weaknesses that makes them who they are. In the movie, Bender is the ââ¬Å"criminalâ⬠, Brian is the ââ¬Å"brainâ⬠and Allison is the ââ¬Å"psychopath.â⬠Each of their situations, strengths and weakness are similar to students that are in our classrooms currently or we may have in our classrooms in the future. For each student it is important to understand their learning differences and as a teacher, how I can use their strengths to help them becomeâ⬠¦show more contentâ⬠¦Some if not most of Benderââ¬â¢s behavior can be prevented; however, Bender has many strengths, which can be used in the classroom. Some of Benderââ¬â¢s strengths include his perceptio n of social constructs and his leadership ability. In the movie, Bender is able to analyze and vocalize the relationship between his peerââ¬â¢s behavior and their social group and/or home life. This strength could be used in a social studies or science classroom, where analyzing relationships between governments and cultures or habitats and animal behaviors leads students to a greater understanding of how the world works. Benderââ¬â¢s leadership abilities could be used to change the way the school is run by assigning him to a student council position. If he is resistant to joining student council, smaller leadership roles could be assigned within the classroom. For example in group work, Bender could be assigned the judge, editor or the one who organizes and puts all the pieces together. With the assigned role, Bender would need to be given guidance on how a person in this position would behave appropriately. Unlike Bender, Brian would not need any guidance for proper behavior because he is a ââ¬Å"teacher pleaser.â⬠Brian is seen as a ââ¬Å"geek,â⬠one who enjoys participating in academic clubs, learning and always follows the rules. Brianââ¬â¢s confidence is linked to his grades, his parentââ¬â¢s perceptions and his peerââ¬â¢s perceptions of him.Show MoreRelatedFilm Analysis - Social Penetration Theory in the Breakfast Club2129 Words à |à 9 PagesSocial Penetration Theory in The Breakfast Club The Social Penetration Theory, adapted by Irwin Altman and Dalmas Taylor, is based on the idea that people are layered like onions, (Griffin 133). These layers are made up by different things that hide an individualââ¬â¢s true self. Oneââ¬â¢s true self can include his or her hopes, fears, likes, dislikes, aspirations and other things that one thinks about. For individuals to become close, they must get past all of the facades and disclose their trueRead MoreSummary Of The Breakfast Club1660 Words à |à 7 PagesTanen and John Hughes in 1985, The Breakfast Club is a classic film depicting the scene of five high school students who spend their Saturday in detention together. The stereotypical popular girl is played by a character named Claire and she somewhat associates with the admired wrestler, Andrew. Brian is the character that embodies an intellectual personality, while Allison is portrayed as the misfit. Lastly, there is John also referred to as ââ¬Å"Benderâ⬠, a character who symbolizes the ââ¬Å"reckless bad boyâ⬠Read More The Breakfast Club Essay examples799 Words à |à 4 Pages The breakfast club was to say the least a boring 80ââ¬â¢s movie. But it was a good movie for the purpose of analysis. Simply put, it will not be on my list of movies to rent next time that I am at the rental store. I chose to explain the points of view of Andrew, the jock, and Allison the loner/quite person. I will also be making use of the key terms Clique Groups, and Identity Crisis. amp;#9;At the start of the movie, Allison was a person off in a corner by herself. She didnââ¬â¢t talk to anyone,Read MoreThe Princess By Claire Standish1455 Words à |à 6 PagesIntroduction Claire Standish or ââ¬Å"the princessâ⬠portrays the stereotypical popular teenage girl in The Breakfast Club. She is in detention with everyone else because she decided to skip class and go shopping, which also plays into the stereotypical teen girl image. It can also be assumed that she is spoiled and rich since her father tried to get her out of detention but failed, and she mentions to the group that her parents only use her to get back at the other one. She brings a fancy lunch of sushiRead MoreSociology Of The Breakfast Club Essay1148 Words à |à 5 Pagestheory, and symbolic interaction. Both functionalism and conflict theory are macro-level and symbolic interaction is micro-level (Macionis, P.19). Each one looks at society in a different way and can in this paper I will analyze the movie ââ¬Å"The Breakfast Clubâ⬠using these perspectives. Functionalism looks at society in aspects of how it contributes to the steadiness/cohesion of the whole society (Anderson, Taylor, Logio, P. 18). There are many institutions that are looked at that include the economicRead More Movie Fight Club Essay1632 Words à |à 7 PagesMovie Fight Club à à à à à For the following analysis, I will be discussing the movie Fight Clubââ¬â¢s two main characters. They are ââ¬Å"Jackâ⬠played by Edward Norton, and Tyler Durden played by Brad Pitt. However the twist to the movie turns out that Jack and Tyler are the same person and Tyler is Jackââ¬â¢s real name. Tyler the character is everything that Jack the character is not. The story narration is provided by the protagonist of ââ¬Å"Fight Club,â⬠ââ¬Å"Jack.â⬠The ambivalent protagonist, who only refers toRead MoreEssay about Psychoanalysis of Brian from The Breakfast Club1172 Words à |à 5 Pagesrest of the characters from Hughesââ¬â¢ The Breakfast Club, can be categorized in more than one level/stage of Lawrence Kohlbergââ¬â¢s levels/stages of moral development. Many of the characters grow as people and can be seen at different levels of moral development throughout the film. For the purpose of this analysis, Brian will be categorized based on the general impressions and behaviors he expresses before reaching his ââ¬Å"changing momentâ⬠near the end of the film (along with the other characters). BrianRead MoreFight Club Character Analysis Essay1666 Words à |à 7 PagesFor the following analysis, I will be discussing the movie Fight Clubs two main characters. They are Jack played by Edward Norton, and Tyler Durden played by Brad Pitt. However the twist to the movie turns out that Jack and Tyler are the same person and Tyler is Jacks real name. Tyler the character is everything that Jack the character is not. The story narration is provided by the protagonist of Fight Club, Jack. The ambivalent protagonist, who only refers to himself as Jack. An ambivalentRead MoreCompetitive Market Analysis Of Preston Apartment Building With Chesapeake913 Words à |à 4 PagesCompetitive Market analysis is done to know about your competitors in the market. This analysis helps us to make corporate strategy according to the com petition I the market. There are basically three Cââ¬â¢s which should be considered while taking strategic decisions. These are: Company, customer and the Competition. In Property management plan, we will able to done comparison between two similar kinds of buildings. Here we will do competitive market analysis of Preston apartment building with ChesapeakeRead MoreFilm Analysis Of The Breakfast Club 2143 Words à |à 9 Pages Joohyun Cho Introduction to Psychology Film Analysis of The Breakfast Club Introduction The film The Breakfast Club was directed and written by John Hughes and was released in the year 1985 (IMDB, 2016). The filmââ¬â¢s running time is 95 minutes and can be categorized under the genre of comedy and drama. It follows five teenagers, who all vary in personality and stereotype, get stuck in detention on a Saturday morning. They are all different types of people in nature but when
Sunday, December 15, 2019
Z Score Free Essays
string(71) " of a null hypothesis but independent and dependent variables as well\." MN 215 A B October 02, 2012 Z Scores, Z Tests and t Tests Overview and Review At the beginning of the course we learned that there are two branches of statistics, namely, parametric and non-parametric. Further we learned that parametric statistical processes are broken down into two other categories, namely descriptive statistical processes and inferential. We learned also that descriptive statistics (mean, mode, median, standard deviation, and frequencies) are only to be used to describe the characteristics of the data rather than draw conclusions of make inferences from the measurement data collected. We will write a custom essay sample on Z Score or any similar topic only for you Order Now However, the importance of descriptive statistics cannot be undermined as they form the basis for the workings of inferential statistical processes ââ¬â especially the mean. In data analysis one of the most important concepts to remember is that regardless of the topic or issue being investigated all is based on the mean of a data set. Although we cannot draw conclusion or make predictions from descriptive statistics their usefulness in inferential statistics is significant. As stated inferential statistics is a branch of statistics that is used in making inferences about traits or characteristics of a greater population on the basis of sample measurement data. The primary goal of inferential statistics is to leap beyond the measurement data at hand and make inferences about a greater population. Take for example a psychologist who is interested in knowing whether a new behavior modification product will likely be a seller in a certain market area. Knowing that the entire consumer population cannot be queried as to market acceptance, the psychologist would select a representative sample for the area, administer whatever measurement instrument is necessary to garner the data and, on the basis, of the sample data results, determine whether or not the new product will be profitable. The statistic used to determine whether or not the sample is representative of the entire market population would be an inferential statistics. When using inferential statistical processes to generate information in order to make predictions about a larger population the chosen sample must always be on the basis of random selection or random assignment. Without random sampling or random assignment the mathematical values received by way of the statistical analysis are in err. Or, another way of putting is to say that the results would be ââ¬Å"Lies, damn liesâ⬠about the data analyzed. For convenience purposes throughout the remainder of this course the following symbols will be used most extensively. Statisticians, regardless of area, use English letters to denote sample statistics and Greek letters to symbolize population parameters. NameSample StatisticPopulation Parameter _ MeanX à µ (mu) VarianceSD? ? 2 (sigma squared) Standard DeviationSD ? (sigma) Correlationr ? (rho) Proportionp ? (pi) Regression Coefficient b ? ( beta)? ? When trying to arrive at conclusions that extend from the measurement data alone, inferential statistics are the data analysis tools of choice. For example, inferential statistics are used to infer from the sample data to the larger population data or when there is an need to make judgments of the probability that an ââ¬Å"observedâ⬠difference between groups is an accurate and dependable one and not those that happened by chance alone. In order too accomplish that which inferential statistics were designed two models are available: estimation testing and hypothesis testing. In the estimation model the sample measurement data is used to estimate a parameter (population) and a confidence interval about the estimate is created. The confidence interval is basically the range of values that has a high likelihood of containing the parameter. The parameter is a numerical value that measures some part or the population measurement scores or values. The second use of inferential statistical processes is in hypothesis testing. The most common manner in which a hypothesis is tested is by developing what is commonly called a ââ¬Å"straw manâ⬠which is what a null hypothesis is call when looking at a situation where in the research investigator wants to determine if the data collected and analyzed is strong enough to reject the null or ââ¬Å"straw manâ⬠hypothesis. Always remember that a null hypothesis is stated that no differences, effects or relationships will occur between and or amongst the events, occurrences, phenomenon, items, or situations being evaluated and measured as a result of some variable. A simple example of a business null hypothesis would be something like the following: There exists no statistically significant difference between widgets made of alloy A and those made of Alloy B in terms of tinsel strength acceptability. Data Requirements When Using Inferential Statistics. Thinking back to the first part of the course we learned that statistical processes must use certain forms of numeric measurement data and this data is expressed as nominal, ordinal, interval and ratio. For descriptive statistics (frequencies and measures of central tendency) it is nominal data that is used. For inferential statistics the measurement data types to be used are either interval or ratio. However, in the social sciences and business arenas ordinal data is often times treated like interval. This is particularly true when studies attempt to assess situations by way of a Lickert scale. For convenience and review the scale presented below will help to clarify the differences between the four scales of measurement discussed earlier in the course. Indications Indicated Direction ofIndicates Amount of Absolute Difference Difference Difference Zero NominalX OrdinalX X IntervalX X X RatioX X X On the basis of the information contained in the table above the following two conditions apply when using inferential statistical processes: * Participants selected for participation in a study should be selected randomly. If sampling is not random, then biases occur and contaminate the accuracy of the findings. The most commonly used inferential statistics that behavioral research uses are those statistical processes that provide for the determination of relationships (correlations), differences and effects between and amongst that which is being measured or evaluated. The specific tests used are the Pearson Correlation Coefficient, Chi Square, Student ââ¬Å"tâ⬠Test, ANOVA (Analysis of Variance), and regression. All of these techniques not only require the use of a null hypothesis but independent and dependent variables as well. You read "Z Score" in category "Papers" Z Scores Calculating the Z Score for Research Purposes. One of the most often used statistical processes in the behavioral sciences is the Z Score. What a Z Score accomplishes is in taking a raw measurement value or score and transforms it into a standard form which then provides a more meaningful description of the individual scores within the distribution. This transformation is based on knowledge about the populationââ¬â¢s mean and standard deviation. Take for example an educational psychologist who is interested in determining how individual students are comparing to the overall group of students with respect to grades. As we have learned before raw scores alone cannot provide insightful information to the psychologist how well an individual student is performing. However, what the psychologist can easily do is calculate a Z Score for each student and determine whether or not an individual student is functioning above or below the mean grade of all students together. When determining the placement of each individual, the Z Score permits the psychologist to calculate how many standard deviations, or the distance, each student is above or below the mean grade of all students together. If there is an academic standard the psychologist is using as a comparative base a different statistical formula is used compared to the formula needed when comparing individual performance to a local sample of student. The formulas for each are presented below. Comparing Individual to Population Standard Comparing Individual to Sample Standard The construction of the two formulas is the same with the exception that one uses the mean and standard deviation of a population and the other of a sample. What is very important to remember, especially for the psychologist, is that comparing an individual to a local academic setting may have entirely different results when the same student is compared to the industry standard. Although this might appear to be a dilemma, it is actually a possible ââ¬Å"blessing in disguiseâ⬠. Take for example the same psychologist compares all his studentsââ¬â¢ rate of academic success in a local facility and determines they are all functioning well above average, or above the mean, in their grades. What happens if the same students are compared to an academic standard and the results show their grade is well below the industry standard or population mean? The conclusion drawn is, therefore, that the students, although having grades are not in line with other educational facilities and corrective programming to increase the performance rate must ensue. For ease of understanding let us look at a business situation. Example. Suppose an employee is producing 3. 5 widgets per hour and the sample average number of widgets per hour is 2. 3 with a standard deviation of 0. 33. The Z Score would be calculated as follows: X = raw score X bar = mean s = standard deviation From this we can conclude that the employeeââ¬â¢s widget production rate per hour of 3. 5 lays 1. 73 standard deviations above the mean. We can conclude further that this employee is function above the mean all others together on the production line in terms of widget production and that the employee is doing better th an 95% of the other employees and only 5% of the total employees are producing more widgets. NOTE: The percentages are easily found on the back of the very last page of your text book. As stated earlier caution must be exercised when drawing conclusions about a single business sample as the statistical information garnered might not be representative of industry standards. Looking at the same employee on an industry standard basis the information might possibly be different. Taking the same employee with an average widget production rate of 3. 5 widgets per hour with a hypothetical population or industry standard mean of 4. 9 and a population standard deviation of 1. 15 the results would be as follows using the formula stated above: X = Employee raw production score à µ = Population standard mean ? = Population standard deviation Z = (3. 5 ââ¬â 4. 79) / 1. 15 = -1. 12 What can be readily seen by way of the negative value Z Score is that the employee falls below the standard industry mean with respect to the number of widgets produced in one hour. Concluding further we c an say that this employee standing is surpassed by 64% of the entire population workforce for he company. Needless to say, the manager needs to take a serious look at the quality of workers in his/her plant. Interpreting the Z Score for Research Purposes. When using Standard Z Scores one must always remember that comparisons are made between individual measurement values and sample or population mean values. At no time can a one use Z Score values to make predictions or drawn inferences about any given situation. To accomplish this, inferential statistical processes must be used. The value of the Z Score lies in the idea that individual tracking is necessary and trends can be plotted. Also, one must always keep in mind that X values do not have to be simple individual raw scores but can also reflect any investigative variable the researcher chooses to investigate. ââ¬Å"Zâ⬠Test When to use the Z Test over the ââ¬Å"tâ⬠Test in Research. Although both the Z test and the ââ¬Å"tâ⬠test are used in research decision hypothesis testing each is used under a different set of circumstances than the other. The primary distinction between the two lies in the sample size requirement. Where ââ¬Å"tâ⬠tests can be used for small samples the Z Test cannot and is, therefore, reserved for sample situations that are larger. Both, however, perform the same function, namely to determine whether or not there are differences between the samples being evaluated or comparisons between sample and population measurements. In addition both the Z and ââ¬Å"tâ⬠tests make use of the mean scores for raw measurement data when calculating differences. Presented below are some examples of using both the Z test and ââ¬Å"tâ⬠test in business today. Z Test: A product safety engineer wants to investigate the average number of possible defective products in worldwide production. A sample is drawn sample (in excess of 30) and mean of the sample is compared to the population mean for evaluation. * Z Test: A psychologist wants to investigate whether or not a 10 hour shift will record more safety accidents in product production compared to the company wide population standa rd of eight hour shifts. * Z Test: A human resource manager wants to investigate whether or not a new employee training program will increase production numbers company wide. ââ¬Å"tâ⬠Test: A psychologist wants to investigate whether or not the sample of 20 line employees of plant A are producing a significantly greater number of products than the sample of 20 employees of plant A. * ââ¬Å"tâ⬠Test: A consumer product safety manager wants to investigate whether or not his small firm is producing an equal number of safe products compared to the industry standard. * ââ¬Å"tâ⬠Test: A human resource manager is interested in knowing if customer service skills of employees in department A are the same as in department B. What is most important to remember is that both the t and Z tests are formulated to arrive at the same conclusion but under different sampling conditions. Keep in mind as well that the Z test is used when the population mean is known. In addition when using a ââ¬Å"tâ⬠test with a small sample base it is assumed the distribution of the data is normal; however, in larger samples the distribution does not have to be normal and a Z test can be used for comparative purposes. Further, in both situations the samples drawn must be on a random basis. The unfortunate limitation of both tests is in the fact that neither permit any conclusions to be drawn if not differences are found between the sample means or sample and population mean. However, one must always keep in mind that Z and ââ¬Å"tâ⬠tests are basically the same as they compare two means to determine whether or not both samples come from the same population. Calculating the Z Test. The example presented below not only provides you with a formula for both population mean testing but sample mean testing as well. What must be closely watched is the effect on sample size with respect to any resulting Z value: Remember that the Z test requires a large sample and should a small sample be used the resulting Z value is contaminated. Formula: Sample vs. PopulationSample vs. Sample __ __ __ Z = / Z = X1 ââ¬â X2 N 2(1/N + 1/N) Example Sample vs. Population: Suppose a product manager is interested in knowing if the number of faulty washing machines being produced in his/her plant in August is indicative of the over-all number of washing machines produced in all plants during the month of August. The product manager draws two samples from his/her assembly line: a sample of 10 and a sample of 100. The example being created is to show how the size of the sample bears directly on the resulting Z Test value. Formula: __ _ Z = / N Data. Sample Test Mean = 30 Population Mean = 25 (Industry Requirement) Population = 15 N = 10 __ Z = / N = 30-25 / 15 / 3. 16 = 15 / 4. 75 Z = 1. 58 Sample Test Mean = 30 Population Mean = 25 (Industry Requirement) Population = 15 N = 100 _ Z = / N = 30-25 / 15 / 10 = 5 / 1. 5 Z = 3. 33 Conclusion: The conclusion the production manager can draw from the above measurement example (N=10 and N=100) is relative to the size of the sample used to determine whether or not the sample is representative of the overall faulty washing machine production in August. Had the production manager set the level of confidence at 0. 01 (99%) the Z test score needed in order to reject the null hypothesis that no differences exist in washing machine production is +1. 96. A Z test value for the 10 sample situation of +1. 58 does not meet or exceed the required value of +1. 96. Therefore, the production manager concludes there is not statistically significant difference in the August faulty washing machine production rate for his/her plant and the overall faulty washing machine production rate of all plants. However, when the sample size is increased the resulting Z test value is extremely different. The 100 sample case, using the same values as in the 10 sample case, provides an entirely different scenario. By increasing the sample size tenfold the resulting Z test value is +3. 33. Obviously this numeric value far exceeds the required +1. 96 value and the production manager can safely conclude that statistically significant differences exist between the faulty washing machine productions in the production managerââ¬â¢s plant compared to the average faulty washing machine production rate of all plants. The reason for the difference in Z test values in knowing that as sample size increases so does the Z test value. Although not shown in this example, but also extremely important, is in knowing that when the variance of the sample differs from the population variance there will exist a lower Z test value. In the 100 sample test, should the resulting Z test value not met the required 1. 96 value the production manager could have concluded that the faulty washing machine production rate of his/her plant meets the production rate of all other plants together for the month of August. As scientific research and applied statistics application are not equipped to lend explanation as to why no differences are determined the only conclusion to be drawn is that the lack of differences is a direct result of sample size and variance. Example Sample vs. Sample vs. Sample Formula: __ __ Z = X1 ââ¬â X2 2(1/N + 1/N) Example: Suppose the same product manager is interested in knowing if the number of faulty washing machines being produced in his/her plant in August is indicative of the number of faulty washing machines produced in a neighboring plant during the month of August. The product manager draws two samples: one from his/her assembly line and one from the neighboring plant: a sample of 100 is drawn from both plants. _ Data: : Sample 1: N=100 X=30 _ Sample 2: N=100 X=25 = 15 (known or assumed) _ _ Z = X1 ââ¬â X2 2(1/N + 1/N) = 30 ââ¬â 25 / (15)? (1/100 + 1/100) = 5 / v (225) (. 01 + . 01) = 5 / 4. 5 = 5 / 2. 12 = 2. 35 Conclusion: On the basis of the Z test value above the production manager would have to conclude that there exists a statistically significant difference in the production rate of the two plants at the . 1 confidence level (99%) as the required critical value of 1. 96 was matched and exceeded. As such it can be stated that the two washing machine samples are not representative of each other and differences occur. Should the product manager replicate the study and use only 10 washing machines per sample the resulting Z test value would be 1. 11 and the conclusion drawn would be that no statistically significant differences are p resent between the two groups and the population. Again this is an example of how sensitive the Z test is to sample size. One must always keep in mind that re-testing a product or service with artificial conveyances (smaller sample size) in order to show that differences are not present is scientifically and professionally unacceptable. Research results must be allowed to fall wherein the statistical analysis places them. Doing otherwise is using the statistical process for reasons other than that which they were intended Drawing Conclusions from the Z Test. Business situations are not unlike any other professional situation, including the behavioral sciences, wherein the researcher or investigator is seeking information as to possible differences between samples or sample and the general population. When business managers or psychologists at any level are interested in making comparisons between products and or services the best-fit statistical tool for large sample situations is the Z test. However, the statistical value is only as good as the controls placed on it and at no time will the actual values give a reason as to why something has happened or why something has not. With regard to the utilization of the Z test in business decision-making the following rules are always to be remembered: * Z Tests can be used to compare a sample to a population or sample to a sample for general population inference. * Z Tests are extremely susceptible to size of sample and variance and not useful when population variance is unknown. * Z Tests work best with very large samples but not with small samples as the correction factor cannot accommodate for the error associated with small samples. Z Tests are natural introductions to t Tests. * Z Tests work with only one (1) dependent variable. * Z Tests cannot work with correlated data. * Z Tests do not permit the making of strong inferences about differences or effects of the testing instrument or situation. * Z Tests have a non-parametric counterpart wherein small samples can be used. ââ¬Å"tâ⬠Test 1a. Introduction to Difference Testing. Difference testing is used primarily to identify if there is a detectable d ifference between products, services, people, or situations. These tests are often conducted in business situations to: * Ensure a change in formulation or production introduces no significant change in the end product or service. * Substantiate a claim of a new or improved product or service * Confirm that a new ingredient/supplier does not affect the perceived attributes of the product or service. * Track changes during shelf-life of a product or the length of time of a service. Differences Between Two Independent Sample Means: Coke vs. Pepsi. Let us again look at a business example wherein the independent sample t-tests are sed to compare the means of two independently sampled groups. Example: do those drinking Coke differ on a performance variable (i. e. numbers of cans consumed in one week) compared to those drinking Pepsi. The individuals are randomly assigned to the Coke and Pepsi groups. With a confidence interval or ?. 05 (corresponding probability level of 95 %) the researcher concludes the two groups are significantly different in t heir means (average consumption rate of Coke and Pepsi over a one week period of time) if the t test value meets or exceeds the required value. If the t value does not meet the critical t value required then the research investigator simply concludes that no differences exist. Further explanation is not required. Presented below is a more useable situation. Example: As a manager of production let us suppose you are wanting to determine whether or not work performance is significantly (statistically) different in a noise related production line vs. a non-noise related production line. Individual Noise Production Non-Noise Production difference: 1-2 38 32 6 2 10 16 -6 3 84 57 27 4 36 28 8 5 50 55 -5 6 35 12 23 7 73 61 12 8 48 29 19 Mean 46. 8 36. 2 10. 5 Standard dev 23 19 12 Variance 529 361 N = 16 Using the raw data and formula above to calculate the t test value the actual t test value, when calculated properly, is 2. 43. Always remember that S = Standard deviation and that the mean is often times shown by the capital letter M rather than a bar mark over a capital X. By going to the appropriate t tables in your text book find the critical value for t at the . 05 confidence interval. The value you should find is 1. 761 Differences Between Two Means of Correlated Samples: Red Bull vs. Power Drink. Again using a business example correlated t test statistical processes are used to determine whether or not there is a relationship of a particular measurement variable on a pre and post test basis. Often times when there exists a statistically significant relationship on a pre and post test basis the business manager can use the first measurement values to predict the second in future situations without having to present a post test situation. Example: Using the same data presented above let us assume that there are not two independent groups but the same group under two different conditions ââ¬â noise production environment and non-noise production environment. Individual Noise Production Non-Noise Production difference: 1-2 1 38 32 6 2 10 16 -6 3 84 57 27 4 36 28 8 5 50 55 -5 6 35 2 23 7 73 61 12 8 48 29 19 N = 8 The first step is to compute the mean of the differences: _ D = ? D N The second step is to square the differences: (6)? + (-6)? + (27)? + (8)? + (5)? + (23)? + (12)? + (19)? The third step is to calculate the standard error of the difference: SED = _ ?D ââ¬â D? / n -1 n The last step is to compute the t test value: _ t = D / SED Using the raw data and formula above to calculate the t test value the actual t test value, when calculated properly, is 3. 087. By going to the appropriate t tables in your text book you can find the critical value to be, at the ? .05 confidence interval is 1. 895. The conclusion drawn is that the differences are statistically significantly different. When to Use Independent Mean or Correlated Sample Difference Testing. In research investigation situations the choice of using an independent sample t test of a correlated sample test is dependent upon whether or not the investigator is seeking to determine differences or relationships. In some situations the need to know whether or not a difference exists between two products or services is more important than knowing if there is a relationship between the two. For example: take the consulting psychologist wants to know if training program A has better success in training managers than training method B. The psychologist would select a sample of each training situations (generally ;30) and test the success of each sample and compare the success of program A with program B. The results would confirm if one training programs was better that the other. If, however, the psychologist was interested in determining how each program compared to the industry standard the programs would be compared, independently, to the population program mean. On the other hand should the consulting psychologist wants to determine whether or not a relationship exists, or predictability can be determine, from one program in two different situations or under two different situations a correlated t test is used. However, knowing the relationship in pre and post test situations are generally reserved for improvement situations. Drawing Conclusions for the t Test. Any conclusion drawn for the t test statistical is only as good as the research question asked and the null hypothesis formulated. ââ¬Å"tâ⬠tests are only used for two sample groups, either on a pre post-test basis or between two samples (independent or dependent). The t test is optimized to deal with small sample numbers which is often the case with behavioral scientists in any venue. When samples are excessively large the t test becomes difficult to manage due to the mathematical calculations involved. How to cite Z Score, Papers
Saturday, December 7, 2019
Operations Management Auckland Transports
Question: Discuss about theOperations Managementfor Auckland Transports. Answer: Introduction The motive of the present discourse is to make fruitful answers of several distinct questions associated with the Auckland Transports (AT) decision to give license to a convenient provider of coffee in future. In this respect, the aspects, which would be elaborated, include identification of five major factors for reaching an apt decision regarding the location of the coffee service. Additionally, the elaboration include analysis of the probable negative and positive sides of the simulated coffee catering service and using different external suppliers for this individual purpose. Nevertheless, a recommendation is going to be prepared for having a cohesive understanding about whether the selected organization Johnny wray would prove successful for AT or not. Examining Five Key Factors Important in Deciding the Location of Coffee Service According to the decided project of City Rail Link, there would be an extension of the passenger rail line and procuring new stations at locations like Aotea Square and the road of Karangahape. For this decided purpose there will be built a long tunnel of 3.4 km under the streets of city centre (at.govt.nz, 2016). Keeping in consideration of the proposed project, factors those catch the eyes for deciding a perfect location for coffee catering are accessibility of the customer, supply availabilities in terms of power and water, options for resupply, flow capacity and costs. Information regarding customers or probable passengers of three of the proposed stations is a potential factor to evaluate prior to decide a suitable location for coffee catering. As per the information broadcasted in the project of City Rail Link (CRL), the supposed program will successfully allow a minimum of 30,000 of people in each hour of peak. Therefore, it is understandable that there will be lack of shortage for target market. Supply availabilities of water and power is an essential aspect to give priority before moving to decide a convenient location as the CRL already has the vision for using the renewable power resources (Strang, 2014). In terms of using renewable resources, Auckland is enriched with water resources like groundwater and river resources (Salmond, 2014). On the other hand, the place enjoys both a wide range of power supplies in terms of both renewable and non-renewable resources (watercare.co.nz, 2016). Cost for the entire planning is another facet that should be taken into concern. It is because the location for the catering will be placed in a location which itself is going to be constructed. Therefore, the estimated cost for setting up the site will be critical to decide. Along with these premises, two more factors to be prioritized are options for resupply and flow capacity of the trains. As both of the options for locations will be newly constructed, there should be occasional shortage of power supplies. On the other side, flow capacity of the trains and their frequency is a considerable factor too (at.govt.nz, 2016). It is fortunate that the new project of CRL will raise the frequency of the trains and will allow pick up facility in every ten minutes. Analyzing the Positive and Negative Sides of Providing own Catering Service The possible sides for providing catering services include - The internalize profit margin would be high as per the decision to extend the business ventures from transport to catering. There will be abandoned of customers as per the frequency of the trains and advanced pick up facility, therefore it will be easy to attract more customers AT may find it cheap to establish the business as per the abundance of power resources and customer accessibility. On the contrary, AT would have to face problems regarding AT does not have a good experience in catering service as it serves as the transport service. It would prove difficult to acquire convenient suppliers because as a new entrant the bargaining power of the giant suppliers will be too high to afford. Additionally, there will be chances for internalization risks as per lack of experiences to gain proper workforce resources and relevant management system. Identification of the positive and negative sides of using different external suppliers If the decision will choose the different external providers in terms of supply then there will be both positive and negative circumstances related to this. Positive Premises The company will have the opportunity to switch suppliers anytime if requirements are not met. There will be less scarcity for acquiring raw material. The bargaining power will be stable based on which the enterprise have the scope to have more options. There will be chance for convenient product development because of easy access of resources (Wisner et al., 2014). Negative Ones It would be difficult to have a well-managed supply system as with too many suppliers there will be too many suppliers requirement which for a start up business is hard to manage (Christopher, 2016). There will be lack of chances for building a strong supplier-buyer relationship as it would be difficult to decide which particular one should would to reliable. Recommendation for Deciding /Partnership with Johnny Wray Johnny wray is considered as one of the leading enterprise for providing convenient coffee services to events by having mobile carts and kiosks of coffee. The most interesting part of the companys business operation is they provide their service in relatively less time and the quality of their supplied coffee is considerably rich. On the other hand, it seems that Johnny wray has barista staffs and facility of stand-alone kiosks, which hold the capability to serve near about 50,000 guests (johnnywrays.co.nz, 2016). Furthermore, the coffee kiosks and mobile carts provided by the enterprise can be customized according to the different requirements of events. Most fortunately, the company has their own stand-alone generators for and their coffee carts generally consume less power. Therefore, it can be recommended that AT should hire Johnny wray for their proposed venture as Johnny wray has self-contained facility like having their own stand-alone generators for power supply. If AT prefers to make partnership with Johnny wray, it would be possible to gain quality performance, as the enterprise is known for giving high quality beverage. Most importantly AT would have to pay less cost for power supply as Johnny wray has their own device for power supply and the business venture would be scalable as Johnny wray has records to work under pressure and heavy demand. On the other hand, Johnny wray has the ability to work flexibly in any kind of environment as they sell their products through mobile carts in place of vans. These carts and Kiosks are designed to be customized as per different requirements. Sustainability Issues and the Way Johnny Ray Manage them Most frequent issues faced by Johnny wray in terms of sustainability are to recycle their cups and coffee wastes. Being an innovative coffee service supplier, the company possesses several strong tactics to mitigate sustainability issues. To reduce wastage of cups, the organization only carry an estimate number of cups according to their estimated number of guest based on any event. The organization prefers to use double wall and paper made cups with eye catchy design, which are easily disposable. To reduce issues regarding power, they carry their own generator that is designed to consume less power as their coffee beans are slow roasted. Conclusion Considering all the recommendations and assumptions regarding the proposed business venture, it can be concluded that two of the stations would be preferable location to place the coffee catering service. It is because both of the stations will have considerable frequency of trains and a huge amount of passengers. Most important to note that partnership with Johnny wray will be a fruitful idea as the company uses location friendly coffee kiosks and mobility carts with a personalized power generator. Moreover, the enterprise uses double wall and paper made cups to avoid sustainability issues. References Christopher, M. (2016). Logistics supply chain management. Pearson Higher Ed. City Rail Link. (2016). Retrieved 26 October 2016, from https://at.govt.nz/projects-roadworks/city-rail-link/ Johnny Wray's. The Corporate Coffee Experts. (2016). Johnnywrays.co.nz. Retrieved 26 October 2016, from https://www.johnnywrays.co.nz/ Salmond, A. (2014). Tears of Rangi: Water, power, and people in New Zealand. HAU: Journal of Ethnographic Theory, 4(3), 285-309. Strang, V. (2014). The Taniwha and the Crown: defending water rights in Aotearoa/New Zealand. Wiley Interdisciplinary Reviews: Water, 1(1), 121-131. Water Sources. (2016). Retrieved 26 October 2016, from https://www.watercare.co.nz/about-watercare/our-services/water-sources/Pages/default.aspx Wisner, J. D., Tan, K. C., Leong, G. K. (2014). Principles of supply chain management: a balanced approach. Cengage Learning.
Subscribe to:
Posts (Atom)